On the Structure of Ideal Class Groups of CM - Fields

نویسنده

  • Masato Kurihara
چکیده

For a CM-field K which is abelian over a totally real number field k and a prime number p, we show that the structure of the χ-component AχK of the p-component of the class group ofK is determined by Stickelberger elements (zeta values) (of fields containing K) for an odd character χ of Gal(K/k) satisfying certain conditions. This is a generalization of a theorem of Kolyvagin and Rubin. We define higher Stickelberger ideals using Stickelberger elements, and show that they are equal to the higher Fitting ideals. We also construct and study an Euler system of Gauss sum type for such fields. In the appendix, we determine the initial Fitting ideal of the non-Teichmüller component of the ideal class group of the cyclotomic Zp-extension of a general CM-field which is abelian over k.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On polarised class groups of orders in quartic CM-fields

We give an explicit characterisation of pairs of orders in a quartic CM-field that admit the same polarised ideal class group structure. This generalises a simpler result for imaginary quadratic fields. We give applications to computing endomorphism rings of abelian surfaces over finite fields, and extending a completeness result of Murabayashi and Umegaki [13] to a list of abelian surfaces ove...

متن کامل

On the Structure of Ideal Class Groups of CM - Fields dedicated to Professor K . Kato on his 50 th birthday

For a CM-field K which is abelian over a totally real number field k and a prime number p, we show that the structure of the χ-component AχK of the p-component of the class group of K is determined by Stickelberger elements (zeta values) (of fields containing K) for an odd character χ of Gal(K/k) satisfying certain conditions. This is a generalization of a theorem of Kolyvagin and Rubin. We def...

متن کامل

Exponents of the ideal class groups of CM number fields

Since class numbers of CM number fields of a given degree go to infinity with the absolute values of their discriminants, it is reasonable to ask whether the same conclusion still holds true for the exponents of their ideal class groups. We prove that under the assumption of the Generalized Riemann Hypothesis this is indeed the case. 1991 Mathematics Subject Classification. Primary 11R29, 11R21.

متن کامل

Ideal Class Groups of Cyclotomic Number Fields I

Following Hasse’s example, various authors have been deriving divisibility properties of minus class numbers of cyclotomic fields by carefully examining the analytic class number formula. In this paper we will show how to generalize these results to CM-fields by using class field theory. Although we will only need some special cases, we have also decided to include a few results on Hasse’s unit...

متن کامل

Grouplikes

In this paper we introduce and study an algebraic structure, namely Grouplike. A grouplike is something between semigroup and group and its axioms are generalizations of the four group axioms. Every grouplike is a semigroup containing the minimum ideal that is also a maximal subgroup (but the converse is not valid). The first idea of grouplikes comes from b-parts and $b$-addition of real number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007